One step closer to 10 Gigabit Ethernet on Raspberry Pi 5 – it is hot

This journey started as an exploration of maximum PCIe capabilities of Raspberry Pi 5 (and hopefully Compute Module 5) platform. I am mainly interested in multi-gigabit Ethernet and Wi-Fi 7 adapters connected via the PCI Express (PCIe) x1 bus.

Last time, we got throughput of 3.44 Gbps. The adapter and the Pi hit the bottleneck of PCIe Gen 2. Unfortunately, they failed to establish PCIe Gen 3 mode.

Generic 10 GbE adapter in M.2 form factor

This time we are going to use a slightly different adapter. It is available from various sellers under different names, but they all look and work the same. I picked up one from “KALEA-INFORMATIQUE” which happened to be readily available in the UK.

Pineberry’s HatDrive! Bottom breaks out Raspberry Pi’s PCIe connection to M.2 M-key format, and that’s where this 10 Gigabit Ethernet adapter plugs into.

Raspberry Pi 5 with 10 GbE adapter

Detail of the Ethernet adapter

Build custom kernel with AQC107 support

This Ethernet adapter uses the same chip and driver the one we previously tested. Here are the steps to make compile a custom Linux kernel that supports the adapter.

Wait, why is it still not working?

We have connected everything, built a custom kernel, we can see the device, but the Ethernet interface is not coming up.

lspci
lspci -v output

Look at this official product photo and my photo below. Spot one difference 😉

The official product photo

The actual correct setup

Did you notice the orientation of the white ribbon cable? The official photo got it wrong. The printed text on the cable needs to be on the top on one side, and on the bottom on the other one.

The eth1 interface and its IP details

What speeds did you get in PCIe Gen 2 mode?

After correcting the orientation of the flexible cable, the interface came up, negotiated 10 Gbps full duplex.

10 Gbps full

I started throughput testing against MacBook with my trusty 10 GbE Thunderbolt adapter.

In PCIe Gen 2 mode, we got TCP throughput of 3.45 Gbps on the downlink and 3.07 Gbps in the upstream direction. Using more iperf3 parallel streams did not increase performance.

Downstream throughput

Upstream throughput

Were you able to use PCIe Gen 3 mode?

Yes! And I got 4.63 Gbps of TCP downstream and 5.5 Gbps (potentially up to 6 Gbps) upstream.

PCIe Gen 3 download
PCIe Gen 3 upload
I managed to get up to 6 Gbps in the upstream direction

That’s hot news… yes 122° Celsius hot!

This adapter has a thermal problem. It comes with a heatsink, but even in idle mode it overheats.

Detail of the heatsink
107.7° C in idle

In PCIe Gen 3 mode with iperf3 test running, we are talking 122.1° C hot! The Pineberry board was very hot and you can literally burn your fingers by touching the heatsink.

122.1° C hot under load
In PCIe Gen 2 mode, it ‘only’ runs at 96.4° C

Long story short. Don’t buy this adapter, unless you want to add a fan or significantly larger heatsink.

Toaster, 10 Gigabit adapter, aren’t they the same thing?

Make your own opinion based on these couple of thermal photos.

Thermal IR footprint of the Ethernet adapter
And here is a toaster for scale 😅

This Ethernet adapter as well as the OWC 10 GbE Thunderbolt both use the same Aquantia AQC107 (part of Marvell now) chip. It does really good job at keeping CPU utilisation low. I’ve seen much cheaper 2.5 GbE adapters that hammer CPU with interrupts until the CPU just can’t take no more.

But, compare size of the two heatsinks. Unlike this one, the OWC adapters delivers good thermal results. Don’t take me wrong, it still runs warm, but not anywhere near.

Same AQC107 chip, massive thermal mass difference

Summary

On the positive side, this is the first 10 Gigabit adapter I tested which actually worked in PCIe Gen 3 mode on Raspberry Pi 5. I got TCP throughput of up to 6.0 Gbps.

As far as I can tell, the limit of Raspberry Pi 5’s PCIe bus is around 6 Gbps if you look at it through the iperf3 TCP traffic lens. AQC107 silicon does an amazing job at keeping the Raspberry Pi’s CPU utilisation low. This helps us get as much throughput as we can from the Pi. But it produces a significant amount of heat.

The fact is that this adapter overheats. Don’t buy it unless you wish to use it with a fan or design a much larger heatsink yourself.

10 Gigabit Ethernet on Intel NUC

Earlier this week, I tested a 10 Gigabit Ethernet M.2 network adapter on Raspberry Pi 5, and it didn’t quite cut it. Mainly due to limited PCIe Gen 2 performance. Now, the question is can this 10 Gigabit adapter actually push 10 Gbps of traffic at all?

To find out, we are going to slightly reconfigure this Intel NUC 12th generation mini PC. It has an M.2 M-key slot for NVMe drive. Let’s use this slot for our 10 GbE adapter. And we will boot Windows 11 off an external USB SSD drive.

Remove NVMe from the M.2 slot
Install 10 GbE network adapter instead
Intel NUC with 10 GbE adapter connected to 10 GbE switch

Install Windows 11 23H2 version on a USB SSD drive, boot Windows, run Windows Update, voila!

Windows Update installed latest driver automatically
It uses PCIe Gen 3
And x2 link width
10 Gbps Full Duplex

With default iperf3 settings we get 6.44 Gbps/7.93 Gbps in the downlink and uplink direction respectively. Not bad, but is that it? Of course not.

iperf3 with default settings

I don’t really want to enable Jumbo frames as it’s not always possible to enable Jumbo frame support end-to-end, especially if part of the network doesn’t support it or isn’t under your management. Fortunately, 8 parallel TCP streams in iperf3 do the trick for us. We get 9.48 Gbps download speed.

9.48 Gbps download

In the upstream direction from this NUC to my MacBook with 10 GbE adapter, we also get 9.48 Gbps. I am happy. You? 😉

9.48 Gbps upload

Summary

After all, this 10 GbE M.2 network adapter is indeed capable of pushing 9.48 Gbps of traffic in either direction. But! It is not really a good choice for a system like Intel NUC. I can’t pop the lid back on, the heatsink is too tall. Frankly, I can’t recommend this adapter at all. It runs hot at 84° Celsius in idle.

If you are looking for a daily driver, and your system supports Thunderbolt, get yourself this OWC 10GbE to Thunderbolt adapter. Here is my test. It works out of the box on Windows (I tested this Intel NUC 12th Gen) and macOS (I tested MacBook Pro M1 and M2). Interestingly, it uses the same chip as the above M.2 adapter. Just compare the two products and their heatsink sizes. The AQC107 keeps the main CPU utilisation very low, but it produces a significant amount of heat.

OWC 10 GbE to Thunderbolt network adapter connected to Intel NUC
OWC 10 GbE to Thunderbolt network adapter connected to MacBook