Full 5 Gigabit Ethernet on Raspberry Pi 5 with iocrest Realtek RTL8126 adapter

I’ve tested a number of 10 Gigabit Ethernet adapters on Raspberry Pi 5 based on the AQC107 chip. One adapter that negotiates PCIe Gen 3, achieves 5.5 Gbps speed and overheats. Another one which only works in PCIe Gen 2 mode and peaks at 3.44 Gbps. And even a full-size PCIe card made by TP-Link which negotiates PCIe Gen 2 link speed and doesn’t go beyond 3.44 Gbps either.

The Realtek RTL8126 chip we are testing today is so far the most suitable for Raspberry Pi 5. It is capable of 5 Gigabit Ethernet at full speed. TCP iperf3 throughput peaks at 4.7 Gbps. It doesn’t overheat. And it doesn’t excessively utilise the Raspberry Pi 5 CPU.

This particular one is sold under the iocrest brand. Like the other boards and adapters there is no increst branding on it and it will likely be sold under various brands. The RTL8126 chip is the key component here.

Raspberry Pi 5 with 5 Gigabit Ethernet network adapter

How did we connect it to the Pi? Via PCIe bus. We breakout the Raspberry Pi 5’s PCIe connector via Pineboards (aka Pineberry Pi) board to M.2 M-key slot. And in that slot we install the iocrest 5 Gigabit Ethernet network adapter – that’s the black M.2 module, plus a PCB with RJ-45 connector on a grey ribbon cable.

iocrest 5 GbE adapter connected to Raspberry Pi 5 via PCIe Gen 3 link
Closer look at the adapter

Here is how it looks from PCI device perspective.

Performance

It has no problem negotiating full duplex 5 Gigabit Ethernet and filling the interface with traffic fully.

5 GbE Full duplex

iperf3 with default TCP settings peaks at 4.7 Gbps up and down. More parallel streams don’t improve the result any further. This is in PCIe Gen 3 mode.

Full 5 Gigabit Ethernet throughput in PCIe Gen 3 mode

Just for the record, if we downgrade PCIe bus to Gen 2 link speeds, we are talking 3.43 Gbps down and 3.31 Gbps up iperf3 TCP throughput-wise.

Throughput in downgraded PCIe bus to Gen 2 mode

Thermal footprint

Fully loaded by TCP traffic, I see temperature of 81.2° C (178° F) on the top surface of the RTL8126 chip. Yes, it is on the warmer side, but Raspberry Pi 5 SoC runs quite warm too and it is nowhere near 122° C temperatures I observed on this “hot” 10 Gigabit Ethernet adapter.

Chip temperature, installed in Intel NUC with M.2 slot

By the looks of it, there is no temperature sensor on the PHY so I can’t measure internal temperature.

CPU utilization and temperature of fully loaded adapter with TCP traffic

Linux software support

I happened to have Raspberry Pi OS with 6.8.0-rc7 kernel running on the Raspberry Pi 5. Out of the box, the adapter did not work. iocrest included driver download link pointing to this Chinese website but I am not so sure I want to use that one.

After installing driver from Realtek’s website, the adapter works just fine.

Power draw

This adapter in PCIe Gen 3 mode draws about 1.5 W in idle, and 2.1 W under full iperf3 load.

Switching the adapter to Gen 2 mode doesn’t make any power savings. I measured 0.1 W less in Gen 2 mode.

The whole setup of Raspberry Pi 5 with fan, Pineboards PCIe adapter, and this 5 GbE adapter in PCIe Gen 3 mode draws about 5.1 Watts in total under full iperf3 load.

Does it work on Windows 11?

Yes, it does. I installed one in Intel NUC 12th generation. It runs at full speed full and Gen 3 x1 mode.

Windows 11 driver (as of May 2024) downloaded automatically via Windows Update only allows this adapter to use 2.5 GbE. To unlock 5 GbE we download driver directly from Realtek’s website and we are all set.

Driver from Realtek’s website with full 5 GbE support
5 GbE full duplex with driver from Realtek’s website
Intel NUC with 5 GbE RTL8126 adapter

With the adapter inserted in M.2 M-key slot, we won’t be able pop the NUC bottom lid back on. The adapter is just a bit too tall.

Bottom lid won’t fit with the adapter installed

Throughput also looks good. I might revisit Windows throughput testing tools at some point. But for now, I take 4.74 Gbps down and 4.42 Gbps up speeds. Increasing number of parallel streams did not improve throughput in any way.

Windows 11 throughput test

For the record, Jumbo frames seem to be supported but I had no reason to explore this further this time.

Jumbo frame support on Windows 11

Summary

As I mentioned towards the beginning, 5 Gigabit Ethernet based on Realtek RTL8126 chip seems to strike the perfect balance for Raspberry Pi 5. It delivers 4.7 Gbps up and down, doesn’t consume much power, and doesn’t produce excessive amount of heat.

Long-time test will tell how it actually performs but for now I am happy with what I’ve seen.

From driver perspective, I am wondering if the latest Linux kernel supports this chip natively or if I can enable the right kernel module manually.

How to connect full-size 10 Gigabit Ethernet PCIe adapter TP-Link TX401 to Raspberry Pi 5 and Intel NUC

It is refreshing to be able to test hardware which actually has a product name :) TP-Link TX401 is a 10 Gigabit Ethernet copper PCIe adapter.

TP-Link TX401 PCIe 10 GbE card

How to connect standard PCIe card to Raspberry Pi 5

I am testing on Raspberry Pi 5 and Intel NUC. Both do have an M.2 M-key slot and they won’t take this card natively, will they?

Pineboards (previously known as Pineberry Pi) makes a great PCIe Gen 3 compatible board that breaks out Raspberry Pi 5 PCIe connector to M.2 M-key slot. And from there we can use another adapter – MZHOU M.2 to PCIe 4X Adapter. It allows us to insert a standard size PCIe card into M.2 M-key slot.

Pineberry Pi M.2 M-key adapter -> M.2 to PCIe adapter -> PCIe card
Pineberry Pi M.2 M-key adapter -> M.2 to PCIe adapter -> PCIe card

The Ethernet adapter is correctly recognised. We just need to build a custom Linux kernel with AQC107 kernel module enabled. Steps by steps instructions are here for your reference. They work for all AQC107 based adapters I’ve tested.

It negotiates 10 Gbps Full duplex link with my switch.

But it only works in PCIe Gen 2 mode on Raspberry Pi 5 in this setup. That means that throughput will be significantly limited to 3.44 Gbps download TCP speed and 3.07 Gbps upload. Using more parallel streams did not help in any way. We are limited by the 4 Gbps throughput of PCIe Gen 2.

I was not able to make PCIe Gen 3 work using this setup. Understandably, high-speed buses don’t like the extra connectors and adapters.

Limited throughput due to PCIe Gen 2

Updated: It wasn’t available back then when I tested this, but Pineboards now sells uPCIty Lite HAT for Raspberry Pi 5 which completely removes the need for the intermediate MZHOU adapter.

How to connect standard PCIe card to Intel NUC

The same M.2 M-key to standard PCIe card adapter works with my Intel NUC 12th Generation.

Standard PCIe card in Intel NUC
Standard PCIe card in Intel NUC

Windows 11 automatically downloads the latest AQC107 driver using Windows Update.

Driver is downloading

It negotiates 10 Gbps Full duplex.

10 Gbps link

The TP-Link card successfully negotiates PCIe Gen 3 x4.

PCIe Gen 3 link speed and x4 width

PCIe Gen 3 allows us to achieve TCP throughput of 9.48 Gbps with no effort in the download direction and 9.49 Gbps in the upload. So this card can clearly do 10 Gigabit Ethernet, it just needs PCIe Gen 3 link speed.

Download TCP throughput 9.48 Gbps
Upload speed 9.49 Gbps

No overheating problem

Unlike unbranded Chinese adapters using the same AQC107 chip, this adapter is designed does not overheat. You can read some horror stories about chip temperatures of 122° degree Celsius (252° F) here.

Idle PHY temperature 58.1° C
PCIe Gen 2 full load temperature 63.3° C
TP-Link TX401 in PCIe Gen 3 mode on Windows 11 runs at normal temperature
Closer look at the heatsink

Summary

This adapter achieves nearly 9.5 Gbps of TCP throughput in either direction on Windows if you allow it to use PCIe gen 3 link speed.

Unfortunately, it only negotiated PCIe Gen 2 with Raspberry Pi 5 and Ethernet throughput is limited to about 3.4 Gbps. So for Raspberry Pi, I would recommend a 2.5 GbE adapter which it can fully handle. Alternatively, a 5 GbE adapter. Coming up next. Stay tuned.

It is a good product though with solid cooling. It still produces some heat but that’s a feature of the AQC107 chip. Its advantage is that it keeps the actual system CPU utilisation low even when fully loaded.

The TX401 is a great fit for a desktop machine. If you run a Mac or NUC, I recommend the external 10 Gigabit Ethernet network adapter connected via USB-C using Thunderbolt 3 protocol. No drivers needed.

One step closer to 10 Gigabit Ethernet on Raspberry Pi 5 – it is hot

This journey started as an exploration of maximum PCIe capabilities of Raspberry Pi 5 (and hopefully Compute Module 5) platform. I am mainly interested in multi-gigabit Ethernet and Wi-Fi 7 adapters connected via the PCI Express (PCIe) x1 bus.

Last time, we got throughput of 3.44 Gbps. The adapter and the Pi hit the bottleneck of PCIe Gen 2. Unfortunately, they failed to establish PCIe Gen 3 mode.

Generic 10 GbE adapter in M.2 form factor

This time we are going to use a slightly different adapter. It is available from various sellers under different names, but they all look and work the same. I picked up one from “KALEA-INFORMATIQUE” which happened to be readily available in the UK.

Pineberry’s HatDrive! Bottom breaks out Raspberry Pi’s PCIe connection to M.2 M-key format, and that’s where this 10 Gigabit Ethernet adapter plugs into.

Raspberry Pi 5 with 10 GbE adapter

Detail of the Ethernet adapter

Build custom kernel with AQC107 support

This Ethernet adapter uses the same chip and driver the one we previously tested. Here are the steps to make compile a custom Linux kernel that supports the adapter.

Wait, why is it still not working?

We have connected everything, built a custom kernel, we can see the device, but the Ethernet interface is not coming up.

lspci
lspci -v output

Look at this official product photo and my photo below. Spot one difference 😉

The official product photo

The actual correct setup

Did you notice the orientation of the white ribbon cable? The official photo got it wrong. The printed text on the cable needs to be on the top on one side, and on the bottom on the other one.

The eth1 interface and its IP details

What speeds did you get in PCIe Gen 2 mode?

After correcting the orientation of the flexible cable, the interface came up, negotiated 10 Gbps full duplex.

10 Gbps full

I started throughput testing against MacBook with my trusty 10 GbE Thunderbolt adapter.

In PCIe Gen 2 mode, we got TCP throughput of 3.45 Gbps on the downlink and 3.07 Gbps in the upstream direction. Using more iperf3 parallel streams did not increase performance.

Downstream throughput

Upstream throughput

Were you able to use PCIe Gen 3 mode?

Yes! And I got 4.63 Gbps of TCP downstream and 5.5 Gbps (potentially up to 6 Gbps) upstream.

PCIe Gen 3 download
PCIe Gen 3 upload
I managed to get up to 6 Gbps in the upstream direction

That’s hot news… yes 122° Celsius hot!

This adapter has a thermal problem. It comes with a heatsink, but even in idle mode it overheats.

Detail of the heatsink
107.7° C in idle

In PCIe Gen 3 mode with iperf3 test running, we are talking 122.1° C hot! The Pineberry board was very hot and you can literally burn your fingers by touching the heatsink.

122.1° C hot under load
In PCIe Gen 2 mode, it ‘only’ runs at 96.4° C

Long story short. Don’t buy this adapter, unless you want to add a fan or significantly larger heatsink.

Toaster, 10 Gigabit adapter, aren’t they the same thing?

Make your own opinion based on these couple of thermal photos.

Thermal IR footprint of the Ethernet adapter
And here is a toaster for scale 😅

This Ethernet adapter as well as the OWC 10 GbE Thunderbolt both use the same Aquantia AQC107 (part of Marvell now) chip. It does really good job at keeping CPU utilisation low. I’ve seen much cheaper 2.5 GbE adapters that hammer CPU with interrupts until the CPU just can’t take no more.

But, compare size of the two heatsinks. Unlike this one, the OWC adapters delivers good thermal results. Don’t take me wrong, it still runs warm, but not anywhere near.

Same AQC107 chip, massive thermal mass difference

Summary

On the positive side, this is the first 10 Gigabit adapter I tested which actually worked in PCIe Gen 3 mode on Raspberry Pi 5. I got TCP throughput of up to 6.0 Gbps.

As far as I can tell, the limit of Raspberry Pi 5’s PCIe bus is around 6 Gbps if you look at it through the iperf3 TCP traffic lens. AQC107 silicon does an amazing job at keeping the Raspberry Pi’s CPU utilisation low. This helps us get as much throughput as we can from the Pi. But it produces a significant amount of heat.

The fact is that this adapter overheats. Don’t buy it unless you wish to use it with a fan or design a much larger heatsink yourself.

10 Gigabit Ethernet on Raspberry Pi 5

Raspberry Pi 5 comes with PCI Express connection and a number of HATs (hardware attached on top) and Bottoms (the opposite of that) are now available for sale. That unlocks some very exciting options. Let’s see how fast can a 10 Gigabit Ethernet adapter on Raspberry Pi 5 go, shall we?

Pineberry’s HatDrive! Bottom proved to be really handy for converting Pi’s PCIe connection to M.2 M-key format. My Kalea-Informatique 10 Gigabit adapter uses exactly that, so that’s a match. Why did I choose this adapter? Very unscientifically this time – it was the first readily available and I was in a fail-fast mood :)

10 GbE adapter connected to Raspberry Pi 5
Pineberry HatDrive! Bottom board with 10 GbE network adapter
Detail of the AQC107 chip powering the network adapter

Enable PCIe port on Raspberry Pi 5

First things first. We need to enable the PCIe connector on the Pi.

sudo nano /boot/firmware/config.txt

# Enable the port
dtparam=pciex1

# Configure PCIe Gen
dtparam=pciex1_gen=2
Enable PCIe and configure mode

Build custom Linux kernel and include the Aquantia driver module

Vanilla Raspberry Pi OS doesn’t include the Aquantia AQC107 kernel module. So we need to burn a micro SD card with a vanilla Raspberry Pi OS Bookworm image, boot the Pi 5 and build a customised kernel.

git clone --depth=1 --branch rpi-6.8.y https://github.com/raspberrypi/linux
cd linux/
sudo apt install flex bison aptitude -y
sudo aptitude install libssl-dev
make bcm2712_defconfig

Edit the config file:

sudo nano .config

Add these 2 lines to .config file:

CONFIG_AQTION=m
CONFIG_AQUANTIA_PHY=m

Trigger customised kernel build on the Pi. This will take some time, so bear with us, please.

sudo make -j4 Image.gz modules dtbs
sudo make modules_install
sudo cp -v arch/arm64/boot/dts/broadcom/*.dtb /boot/firmware/
sudo cp -v arch/arm64/boot/dts/overlays/*.dtb* /boot/firmware/overlays/
sudo cp -v arch/arm64/boot/dts/overlays/README /boot/firmware/overlays/
KERNEL=kernel_2712
sudo cp -v arch/arm64/boot/Image.gz /boot/firmware/$KERNEL.img
uname -a
sudo reboot

After reboot, the LED light on the network adapter should come to life and we can capture first impressions.

Adapter recognised
10 Gbps Full Duplex
lspci -v output

Temperature

First thing you will likely notice is how hot this network adapter runs. It runs at 85° Celsius in idle which is slightly worrying and you can literally burn your fingers if you are not careful. Thumbs down on the thermal design front.

High idle temperature

Under load, surprisingly, it ‘only’ runs 0.5° warmer.

High temperature under load

How fast can it go then?

Raspberry Pi 5 officially supports PCIe Gen 1 and Gen 2. It is not certified for Gen 3.

PCIe Gen 1 mode

In this slowest mode, I got 1.71 Gbps/1.53 Gbps iperf3 TCP results with standard iperf3 settings. No jumbo frames, no other tweaks.

PCIe Gen 1 throughput

PCIe Gen 2 mode

Again, with standard iperf3 settings, I measured 3.44 Gbps/3.04 Gbps TCP throughput between 2 computers both connected to 10 Gbps switch ports via 10 GbE Full Duplex.

PCIe Gen 2 throughput

In idle conditions, this setup draws 7.5 W, and 8.9 W under 10GbE adapter iperf3 -R load (3.45 Gbps). Using more iperf3 parallel streams (the -P parameter) did not help at all.

Power draw

PCIe Gen 3 mode

The adapter supports PCIe Gen 3, but it doesn’t work with the Pi. The Pi is not certified for Gen 3, so I can’t say anything bad about this. The Ethernet adapter is not recognised in Gen 3 mode, and no interface is present in ip a. Sometimes the Pi will fail to boot.

According to dmesg, the Pi forced Gen 2 mode:

brcm-pcie 1000110000.pcie: link down
brcm-pcie 1000120000.pcie: Forcing gen 2
Forcing PCIe Gen 2 mode athough Gen 3 has been configured

I powered my Pi from M2 MacBook USB-C port. So I thought, I might be running into under-voltage issues. I tested the official Raspberry Pi 27 W (5 V * 5 A) AC power and it made no difference.

Did you upgrade Raspberry Pi 5 firmware?

Yes, I did. It is running the latest version available as of March 2024.

Latest firmware installed

Low CPU utilisation

One feature I really enjoyed is the extremely low CPU utilisation under load. I saw slower 2.5 GbE adapters hammer CPU with interrupts, but that’s not the case for this NIC. AQC107 does really good job at keeping the CPU cool.

Low Raspberry Pi 5 CPU load under network load

Cable analytics

Marvell supports Cable Diagnostics feature which uses TDR to measure cable length and detect Ethernet cable for defects. Unfortunately, it doesn’t seem to be supported on the AQC107 chip.

Cable Diagnostics not supported

Can you get 10 Gbps out of this adapter at all?

I am glad you asked. How does an Intel NUC with this 10 GbE adapter sound? I’ve just tested it, here you go.

Intel NUC with 10 GbE adapter

Summary

The high operating temperature really makes this adapter something I can’t recommend. With maximum throughput below 3.5 Gbps, I think you would be better off choosing a 2.5 Gigabit Ethernet adapter, which runs cool and delivers 2.35 Gbps/2.35 Gbps throughput.

Have you tested any other 10 GbE adapter? Did you get better results? Did you find any 2.5 Gbps Ethernet adapter that supports Cable Diagnostics? I am all ears.

Special thanks

Thanks to Luke Jenkins for exploring and sharing the kernel build instructions. Also, thanks to the WLAN Pi team. You can buy the team a coffee using this link.

Wi-Fi 7 comes to WLAN Pi M4

With the WLAN Pi team, we have designed and launched a M.2 adapter from A-key to E-key, which allows you to install a certified Wi-Fi 7 adapter Intel BE200 to your current WLAN Pi M4.

WLAN Pi M4

Is WLAN Pi selling ‘keys’ now? 😉

What is a ‘key’? It is formed of the notch on the Wi-Fi adapter PCB, and plastic blob separating pins inside the M.2 slot. The idea is to prevent users from plugging incompatible cards to the slot, and avoid any ‘magic smoke events’. Here is more about M.2 and the individual key types if you are interested.

WLAN Pi upgrade kit

Since Intel adapters use E-key and WLAN Pi M4 uses A-key, we needed to build an adapter. Badger Wi-Fi has the upgrade kit in stock. It comprises of the Oscium M.2 A-key to E-key adapter, Intel BE200 Wi-Fi 7 adapter, and 2 little bolts to secure the adapter and the Wi-Fi module.

Here is how the ‘butterfly’ setup looks like. Intel BE200 sits onboard of the A-key to E-key adapter, installed in the M.2 slot.

We are ready to connect existing tri-band antennas, and assemble the unit.

Software support

Make sure to either upgrade Linux packages to their latest versions using sudo apt update && sudo apt upgrade command, or download and flash the latest WLAN Pi software image on your SD card. Release 3.2.0 supports Wi-Fi 7 Intel BE200 adapter out of the box with no effort whatsoever on your part.

Wi-Fi 7 in action

For this demonstration I use a consumer Wi-Fi 7 router TP-Link Deco BE85 BE19000. Simply because it is available, Wi-Fi 7 certified, and it supports 320 MHz channel width – not that one would deploy that in an enterprise environment, but mainly to test the maximum Wi-Fi throughput of the Pi.

A bug in macOS doesn’t allow Macs to correctly recognise Wi-Fi 7 networks. Instead of Wi-Fi 7 320 MHz wide network, my MacBook reports Wi-Fi 6 and 160 MHz wide channel. So, we will use another WLAN Pi and its Wi-Fi radio as a Remote Sensor in WiFi Explorer Pro – you need the Pro version to do this.

Nice, Wi-Fi 7 AP!

Wi-Fi 7 network

Connecting the WLAN Pi as a Wi-Fi 7 client only takes few lines of wpa_supplicant config.

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf
Wi-Fi 7 network settings

And we have successfully connected the WLAN Pi as a Wi-Fi 7 client to the AP using this command.

sudo wpa_supplicant -c /etc/wpa_supplicant/wpa_supplicant.conf -i wlan0
WLAN Pi connected as a Wi-Fi 7 client

Run this command to make sure the WLAN Pi requests an IP address from DHCP server running on the router:

sudo dhclient -i wlan0 -v

What channel are we using? 320 MHz channel width? Indeed.

Adapter and channel details

Before you ask, distance between the Pi and the router is sub 1 meter. What is the Wi-Fi data rate? We are using Wi-Fi 7 (EHT), 2 spatial streams, MCS 12 and 4096-QAM and short guard interval of 0.8 µs.

Data rates

We can refer to Francois Verges’ MCS index tool to check how we are doing. Yes, I have tried, but I have only been able to achieve MCS 13 extremely rarely.

MCS table

How far from the AP can we maintain 4096-QAM?

I hardly ever achieved MCS 13. To maintain MCS 12, I had to stay within about 1.5 meter distance from the router. I got best results with antennas position in this ‘V’ pattern.

My noise floor was -96 dBm and RSSI typically between -29 and -39 dBm.

V-shaped antenna placement

With a different client device designed for Wi-Fi 7 from the ground up (with professional quality antennas and placement), I would hope for slightly longer MCS 12 and MCS 13 range.

It’s throughput test time

It’s time to run an iperf3 test and see how much traffic we can actually push over the air and also how much the WLAN Pi M4 can handle. Here is our test setup. I recommend the OWC 10 GbE Thunderbolt adapter (it uses Thunderbolt protocol, not USB) connected via USB-C to your Mac.

With the help of Oscium WiPry Clarity 6 GHz spectrum analyser connected to another WLAN Pi, we can monitor the life spectrum and see how much red the iperf3 test introduces. We are able to achieve download TCP speed of 2.27 Gbps and upload speed of 1.74 Gbps.

I used iperf3 -c 192.168.68.51 -P32 -R to test download speed, and iperf3 -c 192.168.68.51 -P32 for upload. Number of parallel streams set to 32 provided the best performance.

Summary

Wi-Fi 7 works well on the WLAN Pi M4. In fact, it works better than Wi-Fi 7 on Windows 11. We have covered Intel BE200 on Windows 11 in this blog posts.

I was expecting 2.5 Gbps-ish throughput, which we have got quite close to. During the test, CPU of the WLAN Pi was running around 80 % utilisation, and interrupts were reaching 100 %. So, hardware of the WLAN Pi itself posed a bottleneck.

mpstat 1 300 -P ALL
High CPU utilisation due to interrupts

Orientation of the antennas mattered more than I expected to. Best position was a ‘V’ shape with antennas positioned away from the board. With AUX antenna placed 90 degrees relative to the Main antenna, data rates and throughput dropped. Perhaps there is RF noise from the board itself coming into play.

Will faster micro SD card make my WLAN Pi M4 boot faster?

No, it will not, unless you make some bad choices. But, faster card will make your life easier and significantly speed up the image flashing process.

Tests performed

  • Flash and verify WLAN Pi 3.1.4 software image to the micro SD card using built-in card reader of MacBook Pro M2 and Balena Etcher app
Software image flashing process
  • Boot WLAN Pi M4 from the micro SD card. Measure how long it takes to boot from plugging the Ethernet cable in (and PoE power provided) to WLAN Pi home screen shown on the display
WLAN Pi M4 powered via PoE

Results

Sandisk High Endurance 32 GB U3 card is the default provided with WLAN Pi M4 by default. The U3 standard reall y makes a huge difference when it comes to writing to the card and that’s why it is our go to option.

Micro SD cards tested

From practical perspective, different size or even slightly slower card won’t really make your Pi boot any faster. If you make some bad choices and reuse an older class 6 card, you will spend extra 11 seconds of your life waiting for the WLAN Pi to boot every single time.

Flash WLAN Pi imageEffective speedBoot WLAN Pi M4
Sandisk HE 32 GB U31 min 59 seconds64 MB/s28 seconds
Sandisk HE 256 GB U31 min 53 seconds68 MB/s28 seconds
Sandisk Ultra 32 GB U13 mins 54 seconds24 MB/s28 seconds
Samsung 8 GB Class 611 mins 29 seconds8 MB/s39 seconds
Compute Module 4 with built-in eMMC storageDidn’t testDidn’t test27 seconds

Recommendation

Invest in a U3 or better card and benefit from fast write speeds. There is very little premium to pay. In future, you can reuse a fast card in other device like a dash cam, Raspberry Pi 5 workstation, or video camera.

Kingston has a great blog post about SD card standards.

Micro SD card adapter that travels inside your MacBook’s SD card reader

I flash Micro SD cards few times a day (hello WLAN Pi team 😉), and I thought it might be a good idea to always have an SD card to Micro SD card adapter on me. The easiest way to do that is to insert one in your MacBook built-in SD card reader slot. But which one do you buy?

Supplied adapter

There is nothing wrong with this SanDisk adapter. But it sticks out of your laptop. You can’t leave it inserted in the Mac while travelling. And also, the Micro SD card might slip out of the adapter.

White OEM Micro SD to SD card adapter

To my surprise, this £2.60 adapter worked great… for a couple of weeks 😅 Until it disintegrated. It was designed for previous generations of MacBooks and it is not flush with the body of M1 MacBook, but it is still smaller than the full-size adapter.

You can shave off the grey plastic part, and make it even smaller. The white part allows you to easily remove and reinsert the adapter. No nails required.

The Micro SD card goes in the adapter from the side, so it won’t eject in your backpack or laptop bag.

It flashes cards at the exact same speed 61.8 MB/s as the premium £30 BaseQi. And it is easy to remove from the MacBook card reader slot.

BaseQi 420A

This adapter is primarily designed for those who want to expand storage capacity of their MacBook. And it does that really well. It fits perfectly inside SD card reader slot of 14″ M1 2021 MacBook. The problem is that it works ‘too well’. Once you insert the Micro SD card to it, it is very hard to remove the Micro SD card. Now, when you insert it into MacBook SD card reader, it is designed to stay there and again it does that ‘really well’.

Removal of BaseQi from the MacBook card reader takes 2 fingers and 2 nails. Yes, it takes significant effort.

Would I recommend it to someone who wants to use it to flash Micro SD card few times a day? No. It takes a huge effort.

Afterplug Ultra Slim Stick On SD and MicroSD Card Holder with Reusable Adhesive

Problem solved! This stick on card holder did the trick. I can reuse all my SanDisk SD card to micro SD card adapters. And I can carry a handful of them, label them and store the micro SD cards inside the adapters.

Lanyard accessory for WLAN Pi R4

Some of you have asked about the lanyard I use with my WLAN Pi R4. So here is how to make yours.

What does it do?

It allows you to ‘wear’ the R4 while keeping your hands free. You can perform 2.4 GHz, 5 GHz or 6 GHz scanning, spectrum analysis, or packet capture from your Mac.

WLAN Pi R4 with 6 GHz Wi-Fi adapter and 6 GHz spectrum analyser as a remote sensor to WiFi Explorer Pro
Wearable WLAN Pi R4

What parts do I need?

My goal is to use a standard conference lanyard. Use your favourite one or order a custom one with your name or company name. In the UK, I use greencotton on eBay and they have been great.

WLAN Pi R4 lanyard, D rings and bolts

After many iterations, I discovered that these D ring picture holders work best. They are made of metal, of perfect size and readily available. So there is no reason to overengineer this or reinvent the wheel.

Finally, we need two M2.5 x 5 mm bolts to attach the D rings to the bottom of the Waveshare heatsink.

D rings attached to WLAN Pi R4
Lanyard attached to WLAN Pi R4