Wi-Fi 7 on Windows 11

The other week I tested Wi-Fi 7 on Linux. It worked great. Let’s see how Intel BE200 Wi-Fi 7 adapter performs on Windows 11 23H2.

Intel NUC 12th generation with Intel BE200 Wi-Fi 7 adapter

Drivers

Download and install latest driver from Intel’s website. Windows Update itself won’t install any driver, so some manual steps are required. I originally tested driver version 23.20.0.4, and now updated to 23.30.0.6.

Setup

We are using TP-Link Deco BE85 BE19000 consumer Wi-Fi 7 router connected to a 10 Gigabit iperf3 server running on MacBook connected via OWC 10 GbE to Thunderbolt adapter. We have done this on Linux before, so let’s see how the same Wi-Fi adapter performs on Windows.

Wi-Fi 7 on Windows 11 test topology

Performance

On the router, we have configured and verified 320 MHz wide Wi-Fi 7 channel. But when we connect the Windows client, looking at the data rate, it is surprisingly low – if you forgive me calling 2882 Mbps ‘low’ 😊 Considering that the NUC is about 1 meter away from the router, I would expect ~5 Gbps data rate. So what’s going on here?

Connected Wi-Fi 7 client, but low data rate

Interestingly enough, it is the same data rate as we see when connected using 5 GHz 160 MHz channel. Yes, I know, that’s a no-no in Wi-Fi design. We are just testing here.

Hmm, 160 MHz wide 5 GHz channel gives us the same data rate
netsh wlan show interfaces command output

Since Windows doesn’t expose the channel width in the UI, we don’t quite know what is happening on the air. Let’s generate some 6 GHz traffic, and check using Oscium’s WiPry Clarity tri-band spectrum analyser. I love this little USB tool. In this example I use a WLAN Pi as a Remote Sensor. It scans for Wi-Fi networks and streams spectrum information to WiFi Explorer Pro on Mac.

WLAN Pi Remote Sensor with Oscium WiPry Clarity scanning 6 GHz
Windows client is using 160 MHz instead of 320 MHz

Bingo! Apparently, on Windows Intel BE200 uses 160 MHz channel width and doesn’t support 320 MHz wide channel. That halves our data rate and throughput. I wish Windows made channel width more obvious in the UI. Intel BE200 adapter supports 320 MHz wide channels on Linux without a sweat, so hopefully it will get fixed in a future Intel driver or Windows release.

Updated: Apparently, I didn’t read Intel’s release notes closely enough, my bad 😊 Intel BE200 adapter on Windows 11 is only able to use Wi-Fi 6E today. Windows 11 will introduce Wi-Fi 7 support in a future update. Since Wi-Fi 6E supports channel widths up to 160 MHz, that’s why we are not being able to use full 320 MHz channel width. What really confused me was the “Protocol: Wi-Fi 7 (802.11be)” misleading Wi-Fi network status reported by Windows. Thank you Ben for spotting the note in Intel’s documentation.

What does that translate to? Lower data rate and lower throughput. I would expect download and upload to be around 2.5 Gbps using 320 MHz wide channel. With the latest Intel driver 23.30.0.6, we get 1.71 Gbps TCP download speed with 16 parallel streams, and upload of 2.17 Gbps. But only the upper 160 MHz half of the 320 MHz wide channel is used.

1.71 Gbps TCP download speed with 16 parallel streams
Upload TCP speed 2.17 Gbps with 16 streams

I also ran a quick Speedtest.net test (I know it is not a proper throughput testing tool) on a 900/900 Mbps WAN link.

On a Linux Wi-Fi 7 client, I measured nearly 890/890 Mbps. Original Intel driver 23.20.0.4 performed 383/818 Mbps. The latest Intel driver 23.30.0.6 delivered more symmetric numbers, and results were closer to the actual WAN link speed.

Speedtest.net speeds using the latest 23.30.0.6 Intel driver

Summary

Wi-Fi worked well, but application speeds including Speedtest.net and other tools performed quite poorly and subjectively ‘felt slow’. iperf3 test showed higher performance, but the main problem for the purpose of a throughput test is that the adapter only uses 160 MHz out of the available 320 MHz.

When it comes to recommended channel width in real world, it depends. 80 MHz or 40 MHz wide channels are most likely the best place to start depending on your circumstances and region.

For reference: Disable 6 GHz on Intel BE200 adapter

If you are performing tests on an SSID that has multiple bands enabled, and you want to force the client to drop off 6 GHz and join using a 5 GHz channel instead, Intel BE200 driver has the option to disable the 6 GHz band.

Disable 6 GHz band on Intel BE200

Wi-Fi 7 comes to WLAN Pi M4

With the WLAN Pi team, we have designed and launched a M.2 adapter from A-key to E-key, which allows you to install a certified Wi-Fi 7 adapter Intel BE200 to your current WLAN Pi M4.

WLAN Pi M4

Is WLAN Pi selling ‘keys’ now? 😉

What is a ‘key’? It is formed of the notch on the Wi-Fi adapter PCB, and plastic blob separating pins inside the M.2 slot. The idea is to prevent users from plugging incompatible cards to the slot, and avoid any ‘magic smoke events’. Here is more about M.2 and the individual key types if you are interested.

WLAN Pi upgrade kit

Since Intel adapters use E-key and WLAN Pi M4 uses A-key, we needed to build an adapter. Badger Wi-Fi has the upgrade kit in stock. It comprises of the Oscium M.2 A-key to E-key adapter, Intel BE200 Wi-Fi 7 adapter, and 2 little bolts to secure the adapter and the Wi-Fi module.

Here is how the ‘butterfly’ setup looks like. Intel BE200 sits onboard of the A-key to E-key adapter, installed in the M.2 slot.

We are ready to connect existing tri-band antennas, and assemble the unit.

Software support

Make sure to either upgrade Linux packages to their latest versions using sudo apt update && sudo apt upgrade command, or download and flash the latest WLAN Pi software image on your SD card. Release 3.2.0 supports Wi-Fi 7 Intel BE200 adapter out of the box with no effort whatsoever on your part.

Wi-Fi 7 in action

For this demonstration I use a consumer Wi-Fi 7 router TP-Link Deco BE85 BE19000. Simply because it is available, Wi-Fi 7 certified, and it supports 320 MHz channel width – not that one would deploy that in an enterprise environment, but mainly to test the maximum Wi-Fi throughput of the Pi.

A bug in macOS doesn’t allow Macs to correctly recognise Wi-Fi 7 networks. Instead of Wi-Fi 7 320 MHz wide network, my MacBook reports Wi-Fi 6 and 160 MHz wide channel. So, we will use another WLAN Pi and its Wi-Fi radio as a Remote Sensor in WiFi Explorer Pro – you need the Pro version to do this.

Nice, Wi-Fi 7 AP!

Wi-Fi 7 network

Connecting the WLAN Pi as a Wi-Fi 7 client only takes few lines of wpa_supplicant config.

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf
Wi-Fi 7 network settings

And we have successfully connected the WLAN Pi as a Wi-Fi 7 client to the AP using this command.

sudo wpa_supplicant -c /etc/wpa_supplicant/wpa_supplicant.conf -i wlan0
WLAN Pi connected as a Wi-Fi 7 client

Run this command to make sure the WLAN Pi requests an IP address from DHCP server running on the router:

sudo dhclient -i wlan0 -v

What channel are we using? 320 MHz channel width? Indeed.

Adapter and channel details

Before you ask, distance between the Pi and the router is sub 1 meter. What is the Wi-Fi data rate? We are using Wi-Fi 7 (EHT), 2 spatial streams, MCS 12 and 4096-QAM and short guard interval of 0.8 µs.

Data rates

We can refer to Francois Verges’ MCS index tool to check how we are doing. Yes, I have tried, but I have only been able to achieve MCS 13 extremely rarely.

MCS table

How far from the AP can we maintain 4096-QAM?

I hardly ever achieved MCS 13. To maintain MCS 12, I had to stay within about 1.5 meter distance from the router. I got best results with antennas position in this ‘V’ pattern.

V-shaped antenna placement

With a different client device designed for Wi-Fi 7 from the ground up (with professional quality antennas and placement), I would hope for slightly longer MCS 12 and MCS 13 range.

It’s throughput test time

It’s time to run an iperf3 test and see how much traffic we can actually push over the air and also how much the WLAN Pi M4 can handle. Here is our test setup. I recommend the OWC 10 GbE Thunderbolt adapter (it uses Thunderbolt protocol, not USB) connected via USB-C to your Mac.

With the help of Oscium WiPry Clarity 6 GHz spectrum analyser connected to another WLAN Pi, we can monitor the life spectrum and see how much red the iperf3 test introduces. We are able to achieve download TCP speed of 2.27 Gbps and upload speed of 1.74 Gbps.

I used iperf3 -c 192.168.68.51 -P32 -R to test download speed, and iperf3 -c 192.168.68.51 -P32 for upload. Number of parallel streams set to 32 provided the best performance.

Summary

Wi-Fi 7 works well on the WLAN Pi M4. In fact, it works better than Wi-Fi 7 on Windows 11. We have covered Intel BE200 on Windows 11 in this blog posts.

I was expecting 2.5 Gbps-ish throughput, which we have got quite close to. During the test, CPU of the WLAN Pi was running around 80 % utilisation, and interrupts were reaching 100 %. So, hardware of the WLAN Pi itself posed a bottleneck.

mpstat 1 300 -P ALL
High CPU utilisation due to interrupts

Orientation of the antennas mattered more than I expected to. Best position was a ‘V’ shape with antennas positioned away from the board. With AUX antenna placed 90 degrees relative to the Main antenna, data rates and throughput dropped. Perhaps there is RF noise from the board itself coming into play.